
New class of running-wave solutions of the (2+1)-dimensional sine-Gordon equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 4611

(http://iopscience.iop.org/0305-4470/27/13/034)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I.  Phys. A. Math Gen. 27 (1994) 46114618. Printed in the UK 
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of Sofia, Sofia 1126, Bulgaria 

Received 7 December 1993 

Abstract. A new class of mning-wave solutions of the (2 + 1)~dmemional sinffiardon 
equation is investigated. The obtained waves re&t two spatial dimensions for their 
propagarion, i.e. they generalize solutions of the (2 -t 0)-dimensional sin-Gordon equation. 
The parameters of the wave3 strongly depend on the wave amplirude and there exist forbidden 
areas for the wavenumber and frequency. The obtained solutions describe 3 new class of 
Josephson waves whose velocity is smaller than the S w i h  velocity. If o = 0 the running 
waves are reduced to the self-consistent phase, current and magnetic held distributions in a large 
two-dimensional Josephson junction. The self-resuiction coefficient for the Josephson current 
corresponding to one of the sVUcNres is calculated. 

The'( l+l)-dimensional s i n 4 o r d o n  equation is well known because of its soliton solutions 
[I]. By means of this equation a lot of nonlinear phenomena-the waves in the 
long Josephson junction [Z], the magnetic domain wall dynamics [3], the self-induced 
transparency [4] and so on [5-7]-can be described. On the basis of Lamb's ansatz [SI an 
approach for obtaining exact analytical solutions of the (2 + 1)-dimensional sine-Gordon 
equation 

azp a2p a2p 
ay2 a 9  a t2  

+ - - - = sinp - 

was developed 191. Due to this approach a new class of running-wave solutions of (1) is 
investigated here. The obtained waves are expressed by the Jacobi elliptic function dn [IO]: 

(W PI = 4tan-'IAdnIcr(y - YO: k~)ldnIB(z - ZO) + 6y(f - to ) ;  k ~ l )  

A2 - a'( 1 + A') 
olZA2(1 + A2)  

k : = I -  

A' - (B2 - v2)(1 +Az) 
k:=1- (B2 - y2)A2(1 +A?) 
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az(l + A2)2 - A 2  
a2AZ(1 + A2)  

k: = 

where yo, 20, to are constants, A is the amplitude of the wave, p is the dimensionless 
wavenumber, y is the dimensionless frequency and a is a parameter connected with the 
period of the waves in the direction perpendicular to the direction of spreading. 8 = zkl 
and kt .2  are the modules of the Jacobi elliptic function [lo]. 

Including the modules k l , z  of the Jacobi elliptic functions we have six parameters among 
which three relations exist. There are also an additional three relations: 

The six relations impose restrictions on the parameters of the waves. We shall investigate the 
dependence of the wavenumber p ,  the frequency y and the parameter a on the amplitude A 
of the wave. Equations ( 4 H 6 )  lead to allowed and forbidden areas for the wave parameters. 
For the wave ql the restrictions are 

2 A2 < a  <- 
(1 + A2)z ( 1  + A 2 )  

A2 

By means of (Zd) we can express y by @ and A ,  and then (7b) leads to an additional 
restriction for the parameter a: 

A4 
( I  + A')2 

O < d <  

Finally, the allowed area for 01 is 

A2 A4 
(1 + A2)z (1 + AZ)2 

Equation (9) shows that the amplitude of the wave (2 )  must be A > 1. 
For the wave fi the allowed areas for the parameter 01 are 
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From (34 we have that pz - y 2  = $ / A Z ,  and then ( 1  1) leads to an additional restriction 
for a: 

2 A2 < a  <- 
(1 +A2)’ 1 +A2 

A4 

Equations (IO) and (11) show that the right boundary of the allowed area is the same bilt 
the left boundary depends on the value of the wave amplitude. If A < I the left boundary 
is the left boundary of (10). If A > 1 the left boundary is the left boundaty of (12). 

The general form of the dispersion relations for the waves ypI and ’pz is 

Y = Y ( U ,  B, A) .  (13) 

The dependence on the amplitude A shows that the waves are nonlinear, and the new feature 
here is the dependence of the parameter a, i.e. on the spatial characteristics of the wave in 
the direction perpendicular to the direction of propagation. 

The dispersion relation of the wave is 

If we replace the minimum and maximum values of a from (9) we can obtain the allowed 
frequency area for the wave (2): 

Equation (15) shows that a minimum value for the wavenumber exists: 

A2 
B 2 Bmi. = 

The dispersion relation for thz wave fi is 

Replacing a with its minimum and maximum values, we have the restrictions 

A < 1 + ,/=< Y < /= 
A > l +  /= ,82-- G Y G JB’. 

(18) 

(19) 

In figure 1 the dependence @-(A) and in figure 2 the allowed and forbidden areas 
for the parameter a are presented. In figure 3 i s  presented the dependence y ( A )  for fixed 
values of the wavenumber B. 
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Figure 1. The dependence of the minimum wavenumber for the waves pi and (pt on the wave 
amplitude: (1). minimum wavenumber fo the wave V I ;  (2) ,  minimum wavenumber for the wave 
U?. 

Figure 2. The allowed areas for thc parameter a 
of the waves pi and e: (I) ,  allowed area for the 
wave pi; (2) allowed area for the wave e, 

Fignre 3. The allowed arem for the frequency of the waves 
(01 and h: (I) ,  allowed area for ule wave (01; (2). allow'ed 
area for the wave 'p2. 

A physical system described by the (2+l)-dimensional sineGordon equation is the two- 
dimensional tunnelling Josephson junction [I 11. Here is the phase difference between the 
wavefunctions of the electrons in the superconductors of the junction. If the superconductors 
are made of the same material, the dielectric layer of the junction is parallel to the plane 
Oyz,  and the magnetic field possesses components only in the direction of the axes Oy and 
Oz. The Josephson current density and the components of the electromagnetic field in the 
dielectric layer are 1121 

j = j-sin(p) (20) 
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Figure 4. The Josephson cumnt density distribution (units of j / j m m )  for the self-consistent 
phase difference distribution q;. The sizes of the junction are a = 8 Josephson lengths and 
b = 15 Josephson lengths. The parameten of the distribution are n = 1, m = 2. 

where j,, i s  the amplitude of the current density, e is the charge of the electron, 1 is the 
size of the dielectnic layer. d = 1 + 2I, where I is the London penetration depth. 

are the Josephson length and frequency and E is the permittivity of the dielectric layer. 
The scales in the case of the tunnelling junction are: one dimensionless unit for length 
corresponds to one Josephson length in dimension units, and one dimensionless unit for 
frequency corresponds to one Josephson frequency. 

The solutions investigated here describe a new class of phase, current and 
electromagnetic waves in a large two-dimensional junction. These waves need two spatial 
dimensions for their propagation, i.e. they are not solutions of the (l+l)-dimensional sine- 
Gordon equation that describes the well known waves (in this case solitons) in the long 
one-dimensional Josephson junction [13,14]. The phase velocity of the two-dimensional 
running waves in 1141 is greater than the Swihart velocity us = h ~ w ,  [15] while the phase 
velocity of the waves investigated here is smaller than the Swihart velocity. 
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The Josephson waves investigated here possess another interesting application. It is 
well known that the magnetic field of the Josephson current strongly influences the phase 
difference in  the dielectric layer of a large junction. This leads to a self-restriction of the 
current, and the average Josephson current density cannot reach its maximum theoretical 
value j - ,  In the case of a long one-dimensional junction without an electric field 
(a‘p/af = 0). Feme1 and Prange [16,12] have obtained distributions of the Josephson current 
and magnetic field in the dielectric layer of the junction and have shown that the current 
is restricted to the small area near the boundary of the junction, i.e. the long junction can 
have Meisner-like properties. 

In the two-dimensional case the possible distributions of the phase difference, of the 
Josephson currcnt and of the magnetic field can be obtained on the basis of the solutions 
of the (2+0)-dimensional sine-Ciordon equation. The possible self-consistent distributions 
lead to different kinds of behaviour of ‘p on the boundaries of the tunnelling junction. 
Several kinds of solutions of the (2+0)-dimensional sineGordon equation [ 17-19] and the 
phase distributions corresponding to the open circuit along the four edges of a rectangular 
junction have been investigated [19]. If y = 0 in (Za) and (3a) from the running (2 + 1)- 
dimensional waves ‘pi and 9 2 ,  then as particular cases can be obtained the time-independent 
two-dimensional phase distributions ‘pr and ‘p;. Using the characteristic relations for the 
(2+ 1)-dimensional sine-Gordon equation 191 one can easily show that if 01 = 0 or p = 0, 
9; and ‘p; are reduced to the Ferrel and Prange distributions. i.e. here we investigate more 
general distributions in the large junction that in practice is a two-dimensional system and 
is not a one-dimensional one. 

The distributions qr and ‘p; describe doubly periodic cell phase, current and magnetic 
field structures. Let us impose boundary conditions the same as in [I91 on the finite 
rectangular junction whose dimensionless sizes in the direction of the axes Oy and Oz are a 
and b: 

In this case we have an open circuit along the four edges of the junction, and the 
parameters of the distributions depend on two natural numbers: n and m. For both of 
the structures the parameters 01 and ,9 connected with the periods of the structures in the 
corresponding directions (T, = 2K(kl ) /o l ;  T2 = 2K(kz)/p) are 

(3) 

(26) 

2n 
01, = -K(ki.,) a 

Zm 
b 

R = 1 , 2 , 3 . .  . 

pm = - K ( k b m )  m = 1.2 ,3 , .  . . . 

Here K(kl.2) is the complete elliptic integral of the first kind. The other parameters of 
the distribution ‘pr are 
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Table 1. Parameters of the self-consisrent distribution 9:. a and b are the sizes of the junction 
in Josephson lengths. n and m are the panmerers of the distribution. Y is h e  coefficient of the 
self-restriction of h e  superconducting current. 

u b n m v  

8 15 1 2 0.558 
26 24 2 4 0.538 
33 22 3 3 0.583 
14 111 10 16 0.659 

Here the following important restriction must be satisfied: 

The parameters of the distribution p; are 

2 -  b2n2K2(kl,,) 
- a2m2K2(k2,,) 

Here the restriction (30) must also be satisfied, and this restriction leads to maximum values 
of the parameters n and m.  Let us replace the elliptic integrals of the first kind in (30) with 
their minimum value ~ / 2 .  Then 

Equations (34) and (35)  lead to restrictions on the size of the junction-the size in both the 
directions O y  and Oz must be greater than x Josephson lengths because the expressions in 
the roots of (34) and (35) are smaller than 1. Then we can conclude that the distributions 
p; and p; cannot exist in the small junction or in a large junction whose size is smaller 
than II Josephson lengths. 

One can easily see that (28) and (29) or (32) and (33) are nonlinear algebraic equations 
for the modules kl.2.  This means that the periods of each structure Ty = ZK(kl,,)/or,, 
and T; = ZK(k2,,)/fl,,, are connected, i.e. the distributions p; and 9; are self-consistent. 
The modules of the Jacobi elliptic functions can be obtained numerically from the above 
systems of equations, and then one' can also obtain the other parameters of the structures. 
The obtention of the above parameters allow us to calculate the average Josephson current 
density if a. b, n and m are given: 

The obtained values for the parameter v allow us to study the self-restriction of the Josephson 
current, In table 1 are calculated the parameters of the self-consistent distribution pT for 
some values of the parameters a,  b ,  m ,  n. The form of the spatial distribution of the 
Josephson current density for the distribution 'p; is presented in figure 4 .  
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